Inference of perceptual priors from path dynamics of passive self-motion.
نویسندگان
چکیده
The monitoring of one's own spatial orientation depends on the ability to estimate successive self-motion cues accurately. This process has become to be known as path integration. A feature of sequential cue estimation, in general, is that the history of previously experienced stimuli, or priors, biases perception. Here, we investigate how during angular path integration, the prior imparted by the displacement path dynamics affects the translation of vestibular sensations into perceptual estimates. Subjects received successive whole-body yaw rotations and were instructed to report their position within a virtual scene after each rotation. The overall movement trajectory either followed a parabolic path or was devoid of explicit dynamics. In the latter case, estimates were biased toward the average stimulus prior and were well captured by an optimal Bayesian estimator model fit to the data. However, the use of parabolic paths reduced perceptual uncertainty, and a decrease of the average size of bias and thus the weight of the average stimulus prior were observed over time. The produced estimates were, in fact, better accounted for by a model where a prediction of rotation magnitude is inferred from the underlying path dynamics on each trial. Therefore, when passively displaced, we seem to be able to build, over time, from sequential vestibular measurements an internal model of the vehicle's movement dynamics. Our findings suggest that in ecological conditions, vestibular afference can be internally predicted, even when self-motion is not actively generated by the observer, thereby augmenting both the accuracy and precision of displacement perception.
منابع مشابه
Title Inference of Perceptual Priors from Path Dynamics of Passive Self-motion
Title 1 Inference of perceptual priors from path dynamics of passive self-motion 2 3 Abbreviated title 4 Predicting vestibular afference in passive self-motion 5 6 Authors 7 Mario Prsa, Danilo Jimenez-Rezende and Olaf Blanke 8 9 Affiliation 10 1 Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, 1015 11 Lausanne, Switzerland 12 2 Laboratory of Cognitive Neuroscience, Brain M...
متن کاملLearning what to expect (in visual perception)
Expectations are known to greatly affect our experience of the world. A growing theory in computational neuroscience is that perception can be successfully described using Bayesian inference models and that the brain is "Bayes-optimal" under some constraints. In this context, expectations are particularly interesting, because they can be viewed as prior beliefs in the statistical inference proc...
متن کاملTemporal dynamics of decision-making during motion perception in the visual cortex
How does the brain make decisions? Speed and accuracy of perceptual decisions covary with certainty in the input, and correlate with the rate of evidence accumulation in parietal and frontal cortical "decision neurons". A biophysically realistic model of interactions within and between Retina/LGN and cortical areas V1, MT, MST, and LIP, gated by basal ganglia, simulates dynamic properties of de...
متن کاملPassive Non-Prehensile Manipulation of a Specific Object on Predictable Helix Path Based on Mechanical Intelligence
Object manipulation techniques in robotics can be categorized in two major groups including manipulation with and without grasp. The aim of this paper is to develop an object manipulation method where in addition to being grasp-less, the manipulation task is done in a passive approach. In this method, linear and angular positions of the object are changed and its manipulation path is controlled...
متن کاملEffects of Flight Dynamics on Performance of One Axis Gimbal System, Considering Disturbance Torques
The gimbal stabilization mechanism system is used to provide the stability to an object mounted on the gimbal by isolating it from the base angular motion and vibration. In this paper the model of one axis gimbal system with dynamics flying object is introduced. The gimbal torque relationships are obtained using Newton’s second law equation on the assumption that gimbal is rigid body. The syste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 113 5 شماره
صفحات -
تاریخ انتشار 2015